On Cipher-Dependent Related-Key Attacks in the Ideal-Cipher Model

M.R. Albrecht¹ **P. Farshim**² K.G. Paterson³ G.J. Watson⁴

¹SALSA Project -INRIA, UPMC, Univ Paris 06

²Information Security Group, Royal Holloway, University of London (Moving to NTT soon)

²Information Security Group, Royal Holloway, University of London

³Department of Computer Science, University of Calgary

Fast Software Encryption – FSE 2011 14 February 2011

Background and Motivation

The Previous Model

The New Model and Theorem

Conclusions

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Block Ciphers (Theoretically)

A family of permutations

 $E:\mathcal{K}\times\mathcal{D}\to\mathcal{D}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where:

- *K* is the key space; and
- \mathcal{D} is the domain or the message space.

PRP Security

Intuition:

 Cannot tell apart the outputs of the block cipher from truly random values.

More formally:

$$\mathbf{Adv}_{E}^{\mathsf{prp}}(A) := \mathsf{Pr}\left[K \stackrel{\$}{\leftarrow} \mathcal{K} : A^{E(\mathcal{K}, \cdot)} = 1\right] - \mathsf{Pr}\left[G \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{D}) : A^{G(\cdot)} = 1\right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Related-Key Attacks (RKA)

- Denote by $\phi : \mathcal{K} \to \mathcal{K}$ a related-key deriving function.
- Φ is the set of available/allowed ϕ 's.

Intuition:

- Can query an RK oracle on (ϕ, M) to get $E(\phi(K), M)$.
- *E* should be still indist. from a random permutation.

Formally, in a Φ -restricted attack:

$$\begin{aligned} \mathsf{Adv}_{\Phi,E}^{\mathsf{prp-rka}}\left(A\right) &:= \mathsf{Pr}\left[\mathcal{K} \stackrel{\$}{\leftarrow} \mathcal{K} : A^{\mathcal{E}(\mathsf{RK}(\cdot,\mathcal{K}),\cdot)} = 1\right] - \\ \mathsf{Pr}\left[\mathcal{K} \stackrel{\$}{\leftarrow} \mathcal{K} ; G \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{K}, \mathcal{D}) : A^{G(\mathsf{RK}(\cdot,\mathcal{K}),\cdot)} = 1\right] \end{aligned}$$

Why RKA?

- A number of related-key attacks against high-profile ciphers have been discovered.
- Block ciphers are expected to resist related-key attacks.
- There are widely-deployed real-world protocols which make use of related-keys (e.g. EMV and 3GPP).
- Used in analysis of tweakable modes of operation.
- Not clear what a "meaningful" related-key attack is.
- Theoretically interesting: Recent construction of RKA secure PRFs by Bellare and Cash (CRYPTO 2010).

Related-Key Attacks in the Ideal-Cipher Model

- General feasibility results are hard to achieve in standard model.
- Move to the ideal-cipher model: get minimum restrictions on Φ s.t. RKA is provably achievable for an ideal cipher.
- To formalise security in the ICM, as usual, give oracle access to E and E⁻¹.

Formally:

$$\mathbf{Adv}_{\Phi,\mathcal{K},\mathcal{D}}^{\mathsf{prp-rka}}(\mathcal{A}) := \mathsf{Pr}\left[\mathcal{K} \stackrel{\$}{\leftarrow} \mathcal{K} : \mathcal{E} \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{K},\mathcal{D}) : \mathcal{A}^{\mathcal{E},\mathcal{E}^{-1},\mathcal{E}(\mathsf{RK}(\cdot,\mathcal{K}),\cdot)} = 1\right] - \mathsf{Pr}\left[\mathcal{K} \stackrel{\$}{\leftarrow} \mathcal{K}; \mathcal{E} \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{K},\mathcal{D}); \mathcal{G} \stackrel{\$}{\leftarrow} \operatorname{Perm}(\mathcal{K},\mathcal{D}) : \mathcal{A}^{\mathcal{E},\mathcal{E}^{-1},\mathcal{G}(\mathsf{RK}(\cdot,\mathcal{K}),\cdot)} = 1\right]$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Restrictions on the RKD Set Φ

Call Φ Output-Unpredictable (UP) if:

 No adversary can predict the output of any φ, i.e. it cannot return a φ and a K' s.t. φ(K) = K' for a random K.

Call Φ Collision-Resistant (CR) if:

 No adversary can trigger collisions between two φ's, i.e. it cannot return φ₁ and φ₂ s.t. φ₁(K)=φ₂(K) for a random K.

The Bellare-Kohno Theorem

Theorem (Bellare and Kohno – EUROCRYPT 2003)

Fix a key space \mathcal{K} and domain \mathcal{D} . Let Φ be a set of RKD functions over \mathcal{K} . Suppose Φ is both CR and UP. Then no adversary can break an ideal cipher under related-key attacks:

 $\mathsf{Adv}_{\Phi,\mathcal{K},\mathcal{D}}^{\mathsf{prp-rka}}\left(\mathcal{A}\right) \leq \mathsf{Adv}_{\Phi}^{\mathsf{cr}}\left(\mathcal{B}\right) + \mathsf{Adv}_{\Phi}^{\mathsf{up}}\left(\mathcal{C}\right).$

The Bellare-Kohno Theorem: Proof

 $A^{E(\cdot,\cdot),E(\phi_1(K),\cdot),E(\phi_2(K),\cdot)}$

Proof.

Assume different ϕ 's always lead to different keys: CR allows separating distinct ϕ_1 and ϕ_2 queries. UP allows separating ϕ queries from *E* or E^{-1} queries. Now answer queries randomly.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Interpretations of the BK Theorem

The BK theorem is about ideal ciphers. What does it mean for real block ciphers?

- For any CR and UP Φ, there is a block cipher E which resists Φ-restricted attacks.
- There is a block cipher E which resists all Φ-restricted attacks, as long as Φ is CR and UP.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Interpretations of the BK Theorem

The difference is in the order of quantifiers.

- **1** $\forall \Phi, \exists E, E \text{ is } \Phi \text{-secure.}$
- **2** $\exists E, \forall \Phi, E \text{ is } \Phi \text{-secure.}$
 - In the BK theorem *E* is chosen randomly after Φ .
 - So the **1st interpretation is accurate**, and don't expect natural counterexamples.
 - Want *E* to resist all Φ-restricted attacks, including those which may depend on *E*: 1st is not as useful as 2nd.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• But we show a natural counterexample to the 2nd interpretation.

Bernstein's Attack - The RKD set

Consider the *E*-dependent RKD set:

$$\Delta_{\mathcal{E}} := \{ K \mapsto K, K \mapsto \mathcal{E}(K, 0) \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

If *E* is PRP secure, then this set is both UP and CR.

Bernstein's Attack - The Attack

Algorithm A^{f} : (where *f* is either *E* or *G*) Query RK on ($K \mapsto K, 0$). Get x := f(K, 0)Query RK on ($K \mapsto E(K, 0), 0$). Get y := f(E(K, 0), 0)Calculate z := E(x, 0)Return (z = y)

•
$$f = E$$
: have $x = E(K, 0)$, $y = E(E(K, 0), 0)$, and $z = E(E(K, 0), 0)$. Hence $z = y$ with probability 1.

•
$$[f = G]$$
: have $x = G(K, 0)$, $y = G(E(K, 0), 0)$, and $z = E(G(K, 0), 0)$. Since *G* is a randomly chosen permutation

$$\Pr[z = y] = \Pr[E(G(K, 0), 0) = G(E(K, 0), 0)] \approx 1/|\mathcal{K}|.$$

Beyond Indistinguishability: Harris's Attack

Harris gives an attack which recovers the key. Roughly it works as follows:

- The RKD set contains functions φ_i such that the *i*-th bit of E(φ_i(K), m) matches the *i*-th bit of K with noticeable prob.
- The key *K* can then be recovered bit-by-bit (after amplification).
- Slight modification of this set is shown to be UP and CR.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• More details in the paper.

RKD Functions with Oracle Access to E and E^{-1}

Our goal is to capture Bernstein-like attacks, i.e.

Model ϕ 's which depend on *E*.

Extend modelling of RKD functions:

- Allow RKD functions to perform subroutine calls to oracles \mathcal{O}_1 and \mathcal{O}_2 .
- \mathcal{O}_1 and \mathcal{O}_2 are instantiated with *E* and E^{-1} respectively.
- Write the set as $\Phi^{E,E^{-1}}$ and functions as $\phi^{E,E^{-1}}$.

The advantage of an adversary A:

$$\mathsf{Adv}^{\mathsf{prp} ext{-}\mathsf{orka}}_{\Phi^{E,E^{-1}},\mathcal{K},\mathcal{D}}\left(\mathcal{A}
ight)$$

(日) (日) (日) (日) (日) (日) (日)

is defined analogously.

Oracle UP and Oracle CR

Call Φ Oracle-Output-Unpredictable (OUP) if:

• No adversary can return a $\phi^{E,E^{-1}}$ and a K' such that:

$$\phi^{E,E^{-1}}(K)=K',$$

where K and E are randomly chosen.

Call Φ Oracle-Collision-Resistant (OCR) if:

• No adversary can return $\phi_1^{E,E^{-1}}$ and $\phi_2^{E,E^{-1}}$ such that:

$$\phi_1^{E,E^{-1}}(K) = \phi_2^{E,E^{-1}}(K),$$

(日) (日) (日) (日) (日) (日) (日)

where *K* and *E* are randomly chosen.

Taking Care of Extra Collisions

- Recall now ϕ 's have oracle access to E and E^{-1} .
- New collisions between implicit and explicit queries to E or E⁻¹ might arise:
 - Between ϕ 's query and A's RK queries on $\phi' \neq \phi$.
 - Between ϕ 's query and A's RK queries on $\phi' = \phi$!
 - Between ϕ 's query and A's query to E or E^{-1} .
- Take care of this by introducing a new condition which rules out such collisions.

New Condition: Oracle-Independence

Call Φ Oracle-Independent (OIND) if:

 No adversary can return a φ^{'E,E⁻¹}(K) or a key K', another (not necessarily distinct!) φ^{E,E⁻¹}(K), and an x such that:

$$(\phi'^{E,E^{-1}}(K) \text{ or } K',x) \in \{ \text{Queries by } \phi^{E,E^{-1}}(K) \text{ to } E/E^{-1} \},\$$

(日) (日) (日) (日) (日) (日) (日)

where K and E are randomly chosen.

Main Theorem

Theorem

Fix a key space \mathcal{K} and domain \mathcal{D} . Let $\Phi^{E,E^{-1}}$ be a set of **oracle** *RKD* functions over \mathcal{K} . Suppose this set is OCR, OUP, and **OIND**. Then no adversary can break the ideal cipher under oracle related-key attacks. More formally:

$$\mathbf{Adv}_{\Phi^{E,E^{-1}},\mathcal{K},\mathcal{D}}^{\mathsf{prp}\text{-}\mathsf{orka}}(A) \leq \mathbf{Adv}_{\Phi^{E,E^{-1}}}^{\mathsf{ocr}}(B) + \mathbf{Adv}_{\Phi^{E,E^{-1}}}^{\mathsf{oup}}(C) + \mathbf{Adv}_{\Phi^{E,E^{-1}}}^{\mathsf{oind}}(D)$$

Remark: For standard RKD sets the OIND condition is automatically satisfied. Hence the above is an **extension** of the BK theorem.

Main Theorem: Proof

 $\mathbf{\Delta}^{E(\cdot,\cdot),E(\phi_1^{E(\cdot,\cdot)}(K),\cdot),E(\phi_2^{E(\cdot,\cdot)}(K),\cdot)}$

Proof.

OCR allows separating distinct ϕ_1 and ϕ_2 queries. OUP allows separating ϕ queries from E/E^{-1} queries. OIND allows separating E/E^{-1} queries in the exponent from both E/E^{-1} and ϕ queries downstairs.

Results: Ruling out Bernstein's Attack

Theorem

Let

$$\Delta^{\mathcal{E}} := \{ \mathcal{K} \mapsto \mathcal{K}, \mathcal{K} \mapsto \mathcal{E}(\mathcal{K}, \mathbf{0}) \}$$

denote Bernstein's set of oracle RKD functions. Then Δ^E does not satisfy the oracle-independence property.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark: Harris's attack also doesn't satisfy OIND.

Results: Possibility Results

Theorem (EMV)

Fix a key space \mathcal{K} , and let $\mathcal{D} = \mathcal{K}$. Then the following oracle RKD set is OCR, OUP, and OIND.

$$\Omega^{\boldsymbol{E}} := \{ \boldsymbol{K} \mapsto \boldsymbol{E}(\boldsymbol{K}, \boldsymbol{x}) : \boldsymbol{x} \in \mathcal{D} \}.$$

Theorem

Fix a key space \mathcal{K} , and let $\mathcal{D} = \mathcal{K}$. Then the following oracle RKD set is OCR, OUP, and OIND.

$$\Theta^{\boldsymbol{E}} := \{ \boldsymbol{K} \mapsto \boldsymbol{K}, \boldsymbol{K} \mapsto \boldsymbol{E}(\boldsymbol{0}, \boldsymbol{K}) \}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Final Remarks

- Bernstein's and Harris's attacks are "illegal" in the new model.
- Even if we forget about the new condition, the attacks can now be replicated in the ICM.
- Expect a good block cipher E^* to resist Ω_{E^*} and Θ_{E^*} -restricted attacks.
- In Biryukov et al.'s attack on AES the nature of dependency on *E* is not known, as it uses underlying building blocks. Hence the attack should be seen as interesting.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thank You

Thank you for your attention. Questions/Suggestions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ